Fibonacci Sequence Number

Here are the numbers;

1, 2, 3, 5, 8, 13, 21

Here’s a simple example of the Fibonacci sequence in action:

The Rabbit Population Problem (the classic example)

Starting with one pair of rabbits:

  • Month 1: 1 pair (too young to reproduce)
  • Month 2: 1 pair (now mature, but no babies yet)
  • Month 3: 2 pairs (original pair + 1 new pair of babies)
  • Month 4: 3 pairs (2 from last month + 1 new pair from the original couple)
  • Month 5: 5 pairs (3 from last month + 2 new pairs)
  • Month 6: 8 pairs (5 from last month + 3 new pairs)

The sequence: 1, 1, 2, 3, 5, 8, 13, 21…

Each number is the sum of the two previous numbers: 1+1=2, 1+2=3, 2+3=5, 3+5=8, and so on.

Real-world example you can observe: Look at a sunflower head. Count the spiral arms going clockwise, then counterclockwise. You’ll typically find Fibonacci numbers like 21 and 34, or 34 and 55. The seeds naturally arrange themselves in this pattern because it’s the most efficient way to pack them into the circular space.

Simple coding example (python):

def fibonacci(n):
    if n <= 1:
        return n
    return fibonacci(n-1) + fibonacci(n-2)

# First 10 Fibonacci numbers
for i in range(10):
    print(fibonacci(i))

FavoriteLoadingAdd to favorites

RECENT POSTS


Categories



Tags

ADO ai angular asian asp.net asp.net core azure ACA azure administration azure app services Azure Cloud Architect Azure Key Vault Azure Storage Blazor WebAssembly BLOB bootstrap c# css datatables design pattern docker excel framework Git HTML JavaScript jQuery json knockout lab LINQ linux power bi powershell REST API smart home SQL Agent SQL server SSIS SSL SVG Icon typescript visual studio Web API window os wordpress


ARCHIVE


DISCLAIMER